Di perairan umum fosfor tidak ditemukan dalam bentuk bebas sebagai elemen, melainkan dalam bentuk senyawa anorganik yang terlarut (ortofosfat dan polifosfat) dan senyawa organic yang berupa partikulat. Fosfor berbentuk kompleks dengan ion besi dan kalsium pada kondisi aerob, besifat tidak larut, dan mengendap pada sediment sehingga tidak dapat dimanfaatkan oleh algae akuatik
Fosfor berperan dalam transfer energi di dalam sel, misalnya yang terdapat pada ATP (Adenosine Triphosphate) dan ADP (Adenosine Diphosphate). Ortofosfat yang merupakan produk ionisasi dari asam ortofosfat adalah bentuk fosfor yang paling sederhana di perairan Reaksi ionisasi asam ortofosfat di bawah ini .
H3PO 4 H+ + H2PO4¬
H3PO4- H+ + HPO2-
HPO42- H+ + PO43-
Ortofosfat merupakan bentuk fosfor yang dapat dimanfaatkan secara langsung oleh tumbuhan akuatik, sedangkan polifosfat harus mengalami hidrolisis membentuk ortofosfat terlebih dahulu, sebelum dapat dimanfaatkan sebagai sumber fosfor. Setelah masuk ke dalam tumbuhan, misalnya fitoplankton, fosfat anorganik mengalamia perubahan menjadi organofosfat. Fosfat yang berkaitan dengan ferri (Fe2(PO4)3) bersifat tidak larut dan mengendap di dasar perairan. Pada saat terjadi kondisi anaerob, ion besi valensi tiga (ferri) ini mengalamai reduksi menjadi ion besi valensi dua (ferro) yang bersifat larut dan melepaskan fosfat ke perairan, sehingga meningkatkan keberadaan fosfat di perairan.
Fosfor total menggambarkan jumlah total fosfor, baik berupa partikulat> maupun terlarut, anorganik maupun organic. Fosfor organic biasanya disebut soluble reactive phosphours, misalnya ortofosfat. Fosfor organic banyak terdapat pada perairan yang banyak mengandung bahan organic. Oleh karena itu, pada perairan yang memiliki kadar bahan organic tinggi sebaiknya ditentukan juga kadar fosfor total, di samping otofosfat.
Unsur fosfor berubah bentuk secara terus-menerus, akibat proses dekomposisi dan sintesis antara bentuk organic dan bentuk anorganik yang dilakukan oleh mikroba. Semua polifosfat mengalami hidrolisis membentuk ortofosfat. Perubahan ini bergantung pada suhu. Pada suhu yang mendekati titik didih, perubahan polifosfat menjadi ortofosfat berlangsung cepat. Kecepatan ini meningkat dengan menurinnya nilai pH. Perubahan polifosfat menjadi ortofosfat pada air limbah yang mengadung bakteri berlangsung lebih cepat dibandingkan dengan perubahan yang terjadi pada air bersih.
Keberadaan fosfor diperairan alami biasanya relative kecil, dengan kadar yang lebih sedikit dari pada kadar nitrogen; karena sumber fosfor lebih sedikit dibandingkan dengan sumber nitrogen diperairan. Sumber alami fosfor diperairan adalah pelapukan batuan mineral, misalnya fluorapatite [Ca5-(PO4)3F], hydroxylapatite [Ca5-(PO4)3OH], strengire [Fe(PO4)2H2O], whitlockite [Ca5-(PO4)2], dan berlinite (AIPO4). Selain itu, fosfor juga berasal dari dekomposisi bahan organic. Sumber antropogenik fosfor adalah limbah industri dan domestic, yakni fosfor yang berasal dari detergen. Limpasan dari daerah pertanian yang menggunakan pupuk juga memberikan kontribusi yang cukup besar bagi keberadaan fosfor.
Kebutuhan Fosfor Ikan
Fosfor adalah nutrisi mineral penting karena dibutuhkan untuk pertumbuhan, mineralisasi tulang, reproduksi, sintesis asam nukleat , dan metabolisme energi. Tanda-tanda kekurangan fosfor seperti mengurangi pertumbuhan tulang dan kelainan bentuk dan kuantitatif persyaratan telah ditentukan untuk beberapa jenis ikan. Seperti fosfat rendah di sebagian besar lingkungan perairan , sumber utama fosfor terutama berasal dari daging atau premixes, tulang ikan dan tanaman. Bentuknya sangat beragam, namun umumnya anorganik (kalsium dan kalium garam) dan organik (fosfolipid) yang ditemukan pada ikan dan tersedia bagi ikan daripada phytates ditemukan di tumbuhan. Salah satu studi terkini tentang efek dari diet fosfor dan tingkat fosfolipid pada pertumbuhan dan tanda-tanda kekurangan fosfor diteliti pada juvenil flounder javanese.
Telah dikenal selama hampir 25 tahun bahwa pemberian fosfolipid dalam pakan dapat meningkatkan produksi budidaya air tawar dan laut berbagai spesies ikan. Efek menguntungkan utama adalah meningkatkan pertumbuhan larva dan juvenil, tetapi juga meningkatkan tingkat kelangsungan hidup dan penurunan malformasi pada fase larva, dan peningkatan kemampuan dalam mengahadapi stres. Penentuan kebutuhan gizi mutlak telah terhambat oleh penggunaan, dalam percobaan diet yang berbeda, dari berbagai persiapan fosfolipid yang dapat sangat bervariasi baik dalam jumlah dan komposisi fosfolipid.
Ikan diberi makan tanpa suplemen fosfor suplemen memiliki tulang yang sangat lembut dan malformasi vertebra juga makin banyak ditemukan pada ikan. Demikian juga konsentrasi abu, kalsium dan fosfor pada sisik , vertebra dan opercula ikan sangat signifikan lebih rendah pada diet makan ikan tanpa fosfor suplemen. Tanpa adanya suplementasi fosfor, pemberian kalsium itu tidak berpengaruh pada kalsium atau kandungan fosfor pada sisik dan tulang belakang. Namun, ketika diet yang dilengkapi dengan 6 g / kg fosfor, mineralisasi vertebra menurun dengan suplemen kalsiumtinggi (12 atau 18 g / kg) tapi tidak terjadi pada sisik. Berdasarkan temuan ini, yang optimal makanan suplemen kalsium dan 6 g / kg (total diet kalsium dan fosfor masing-masing 9,3 dan 10,3 g / kg.
Dampak faktor nutrisi pada pertumbuhan vertebrata dan metabolisme dimediasi oleh sistem endokrin, dimana hormon pertumbuhan (GH) dan IGF-I memainkan peranan penting. GH diprodusi dan disekresi dari pituitary, sedangkan IGF-I diproduksi terutama dari hati atas rangsangan oleh GH. GH dan IGF-I telah menunjukkan untuk merangsang pertumbuhan ikan, tetapi relatif kontribusi, dan sejauh mana GH dan IGF-I berinteraksi dan / atau bertindak secara independen untuk mengatur pertumbuhan dan proses metabolisme belum jelas. System GH-IGF-I sangat dipengaruhi oleh kondisi nutrisi ikan seperti pelaparan, atau peningkatan kebutuhan protein/ rasio energi yang secara umum dapat meningkatkan tingkat plasma GH dan menurunkan tingkat plasma IGF-I (Pierce et al., 2005). Penelitian terkini telah menunjukkan bahwa kebutuhan protein dapat berdampak pada tingkat plasma GH, tetapi tidak pada tingkat IGF-I pada pada rainbow trout dan gilthead sea bream.
Hormon Pertumbuhan
Hormon pertumbuhan dan hormon tiroid sering bertindak sinergi sebagai pengatur utama kapasitas hypoosmoregulatory, perubahan morfologis (sisik keperakan dan kulit), perubahan metabolik dan prilaku membentuk formasi schooling. Pada umumnya fungsi hormon reproduksi di dalam tubuh ikan berkembang sesaat setelah ikan dewasa. Tingkat kedewasaan ikan sangat berlainan tergantung spesies dan lingkungan hidupnya.
Tingkat plasma hormon pertumbuhan (GH) secara signifikan lebih tinggi pada ikan yang diberi protein nabati daripada ikan yang diberi makanan hydrolysate tinggi. Tingkat plasma IGF-I tidak terpengaruh oleh diet. Perbandingan dari kelompok dengan dimasukkannya bahan nabati, dengan demikian tingkat pertumbuhan yang sama inhibitor, hal ini menunjukkan bahwa dalam menghilangkan senyawa-senyawa dengan berat molekul kecil dari ikan hydrolysate, pertumbuhan dan efisiensi pakan dikurangi secara signifikan. Beberapa senyawa pada ikan kecil hydrolysate tampaknya menjadi penting bagi kinerja biologis. Lebih jauh lagi, sebagai makanan ikan mengungkapkan performa terbaik.
Dampak dari faktor gizi pada pertumbuhan vertebrata dan metabolisme endokrin dimediasi oleh regulator, dimana hormon pertumbuhan (GH) dan insulin-seperti pertumbuhan Faktor I (IGF-I) memainkan peran utama. GH diproduksi dan disekresikan dari hipofisis, sedangkan IGF-I diproduksi terutama dari hati atas stimulasi oleh GH. Kedua GH dan IGF-I telah ditunjukkan untuk merangsang pertumbuhan ikan, tetapi mereka relatif kontribusi, dan sejauh mana GH dan IGF-I berinteraksi dan / atau bertindak secara independen untuk mengatur pertumbuhan dan proses metabolisme belum jelas.
Sistem GH-IGF-I sangat dipengaruhi oleh status gizi ikan, e.g. puasa atau penurunan protein / energi ransum yang umumnya ditandai dengan peningkatan kadar GH plasma dan penurunan IGF-I plasma level. Studi saat juga menunjukkan bahwa sumber protein diet dapat mempengaruhi tingkat GH plasma, tetapi tidak tingkat IGF-I, trout pelangi dan laut gilthead bream. Selain itu, diet seimbang asam amino mengubah komposisi plasma GH dan IGF-I tingkat gilthead seabream. Namun, pengaruh faktor diet tertentu di GH-IGF-I sistem trout pelangi belum diteliti dengan baik.
Peningkatan pencernaan atau peningngkatan transportasi lipid dari hati ke jaringan atau pengambilan lipid oleh jaringan di lemak ikan juga mungkin terlibat. Pada mamalia, obesitas terkait dengan gangguan sekresi hormon pertumbuhan dan perubahan leptin dan regulasi Insulin like Growth Factor (Livshits et al., 2005).
Tingkat plasma hormon pertumbuhan GH berkurang dengan peningkatan ukuran ransum. Selain itu, di bawah tingkat menyusui tetap, plasma GH tingkat lebih rendah di ikan makan diet lemak tinggi. Tren yang berlawanan ditemukan pada ikan makan untuk kenyang. Setelah 8 hari puasa, memberi makan ikan sebelumnya 17% lipid diet untuk kenyang juga dipamerkan hypersomatotropism yang lebih menonjol dan hipoglikemia, terkait dengan peningkatan lemak tubuh kehilangan.
Hormon pertumbuhan (GH) / (IGF-I) (GH-IGF-I) memainkan peranan dalam pertumbuhan mamalia. Pada mamalia, IGF-I adalah pengatur utama pertumbuhan dan konsentrasi yang ditemukan dalam plasma diatur oleh interaksi yang kompleks antara reseptor dan pengikatan protein. Bukti menunjukkan bahwa IGF-I memainkan peran serupa dalam pertumbuhan ikan. Tingkat IGF-I meningkat dengan peningkatan ukuran pakan. Hasil penelitian menyatakan bahwa pengukuran tingkat IGF-I dapat memberikan petunjuk untuk memantau pertumbuhan ikan serta menilai metode untuk menilai formulasi diet yang berbeda.
Hubungan fosfor dengan hormon pertumbuhan
Hormon memainkan peran sentral dalam regulasi pertumbuhan dan pemanfaatan nutrisi ikan. Akibatnya, sistem endokrin ikan sensitif terhadap perubahan asupan gizi. Prosedur secara rutin digunakan dalam pengembangan diet dan protokol untuk budidaya ikan memiliki efek nyata pada sistem endokrin. Perubahan pada tingkat dosis (termasuk pembatasan makanan dan kekurangan makanan), komposisi diet, photoperiod, dan pengaruh waktu makan yang paling intensif pada ikan untuk mempelajari metabolisme hormon: hormon tiroid, hormon pankreas, dan hormon-hormon pertumbuhan-hormon insulin seperti sumbu faktor pertumbuhan (Deane 2008). Sedangkan efek dari diet ini manipulasi pada kadar hormon yang bersirkulasi total biasanya diperiksa, asupan gizi juga dapat mempengaruhi transportasi hormon dalam darah, aktivasi dalam jaringan perifer, mengikat reseptor, dan jalur neuroendokrin mengatur sekresi hormon. Informasi mengenai mekanisme seluler dan molekuler melalui nutrisi yang mempengaruhi sistem endokrin masih diperlukan. Signifikan informasi baru tentang pengaturan fungsi endokrin dapat diturunkan dari studi gizi saat ini bekerja di perikanan budidaya untuk pengembangan pakan. Informasi tambahan tentang pengaruh gizi pada fungsi endokrin penting untuk desain dan penafsiran studi suplementasi hormon, dan seharusnya akhirnya memungkinkan pengembangan strategi pemberian makanan yang meningkatkan produksi hormon anabolik.